
sapientml
Release 0.4.9

The SapientML Authors

Nov 22, 2023

USERS:

1 Installation 3

2 Usage 5

3 Configuration 9

4 Setup 11

5 Training from a corpus 13

6 API 23

7 Indices and tables 29

Index 31

i

ii

sapientml, Release 0.4.9

Generative AutoML for Tabular Data

SapientML is an AutoML technology that can learn from a corpus of existing datasets and their human-written
pipelines, and efficiently generate a high-quality pipeline for a predictive task on a new dataset.

USERS: 1

sapientml, Release 0.4.9

2 USERS:

CHAPTER

ONE

INSTALLATION

1.1 Install with pip

sapientml needs to be installed just like any other python package into your documentation building environment:

pip install sapientml

Note: If you wish to use plugins created by a third-party, please follow the guidelines provided by them.

3

sapientml, Release 0.4.9

4 Chapter 1. Installation

CHAPTER

TWO

USAGE

sapientml generates source code to train and predict a machine learning model from a CSV-formatted dataset and
requirements of a machine learning task to be solved.

2.1 SapientML class

sapientml provides SapientML class that provides the top level API of SapientML. In the constructor of SapientML,
you firstly need to set target_columns as a requirement of the task. target_columns specifies which the task is
to predict. Second, you can set task_type from classification or regression as a type of machine learning
task. You can also skip setting task_type and in that case SapientML automatially suggests task type by looking into
values of the target columns.

from sapientml import SapientML

cls = SapientML(
target_columns=["survived"],
task_type=None, # suggested automatically from the target columns

)

As well as model classes of the other well-known libraries like scikit-learn, SapientML provides fit and predict
to conduct model training and prediction by using generated code.

import pandas as pd
from sklearn.metrics import f1_score
from sklearn.model_selection import train_test_split

train_data = pd.read_csv("https://github.com/sapientml/sapientml/files/12481088/titanic.
→˓csv")
train_data, test_data = train_test_split(train_data)
y_true = test_data["survived"].reset_index(drop=True)
test_data.drop(["survived"], axis=1, inplace=True)

cls.fit(train_data, output_dir="./outputs")
y_pred = cls.predict(test_data)

print(f"F1 score: {f1_score(y_true, y_pred)}")

5

sapientml, Release 0.4.9

2.2 Generated source code

After calling fit, you can get generated source code at ./outputs folder. Here is the example of files generated by fit:

outputs
1_script.py
2_script.py
3_script.py
final_predict.py
final_script.out.json
final_script.py
final_train.py
lib

sample_dataset.py

1_script.py, 2_script.py, and 3_script.py are scripts of the hold-out validation using the preprocessors and the
top-3 most plausible models. final_script.py is the script that selects the model actually achieved the highest score
of the top-3 models, and final_script.out.json contains its score. final_train.py is the script for training the
selected model, and final_predict.py is the the script for prediction using the model trained by final_train.py.
lib folder contains modules that the above scripts uses.

2.3 Using generated code as a model

After calling fit, you can also get cls.model, which is a GeneratedModel instance that contains generated source
code and .pkl files of preprocessers and a actual machine learning model. The instance also asts a usual model
providing fit and predict.

cls.fit(train_data)
model = cls.model # obtains GeneratedModel instance

You can get the set of source code and .pkl files by referring model.files or by looking into ./outputs folder after
calling model.save("./model"). Here is the example of files contained in GeneratedModel:

model
final_predict.py
final_train.py
lib

sample_dataset.py
model.pkl
ordinalEncoder.pkl
simpleimputer-numeric.pkl
simpleimputer-string.pkl

The actual behavior of model.fit is a subprocess executing final_train.py. Beware that model.
fit(another_train_data) is not retraining the existing model but buiding a new one. model.predict creates
a subprocess executing final_predict.py as well.

SapientML provides a utility function to restore the SapientML instance from generated model.

import pickle

cls.fit(train_data)
(continues on next page)

6 Chapter 2. Usage

sapientml, Release 0.4.9

(continued from previous page)

with open("model.pkl", "wb") as f:
pickle.dump(sml.model, f)

with open("model.pkl", "rb") as f:
model = pickle.load(f)

sml = SapientML.from_pretrained(model)

2.3. Using generated code as a model 7

sapientml, Release 0.4.9

8 Chapter 2. Usage

CHAPTER

THREE

CONFIGURATION

The constructor of SapientML class consumes various parameters depending on plugin installation. Here we show the
parameters you can assign at the constructor of SapientML in cases of each model_type assigned.

3.1 Model types

sapientml provides the plugin mechanism for generating source code that is different from the original algorithm of
sapientml in utilizing machine learning models and preprocessing components. Each plugin has a unique model_type,
and users can choose one of them as a parameter of the constructor of SapientML class. The default value of
model_type is sapientml, which is provided by sapientml_core plugin.

3.1.1 Parameters for sapientml

target_columns (list[str])
Names of target columns.

task_type (classification’, ‘regression’, or None) = None
Identifies the task type from classification or regression, or automatically suggests it if set to None

adaptation_metric (str) = ‘f1’ if task_type is ‘classification’, ‘r2’ if ‘regression’
Metric for evaluation. f1, auc, ROC_AUC, accuracy, Gini, LogLoss, MCC (Matthews correlation coefficient),
QWK (Quadratic weighted kappa) are available for classification. r2, RMSLE, RMSE, MAE are available for regres-
sion.

split_method (‘random’, ‘time’, or ‘group’) = ‘random’
Method of train-test split. random uses random split. time requires split_column_name. This sorts the data
rows based on the column, and then splits data. group requires split_column_name. This splits the data so
that rows with the same value of split_column_name are not placed in both training and test data.

split_seed (int) = 17
Random seed for train-test split. Ignored when split_method='time'.

split_train_size (float) = 0.75
The ratio of training size to input data. Ignored when split_method='time'.

split_column_name (str or None) = None
Name of the column used to split. Ignored when split_method='random'

time_split_num (int) = 5
Passed to n_splits of TimeSeriesSplit. Valid only when split_method='time'.

time_split_index (int) = 4
The index of the split from TimeSeriesSplit. Valid only when split_method='time'.

9

sapientml, Release 0.4.9

split_stratification (bool or None) = None
To perform stratification in train-test split. Valid only when task_type='classification'.

initial_timeout (int) = 600
Timelimit to execute each generated script. Ignored when hyperparameter_tuning=True and
hyperparameter_tuning_timeout is set.

timeout_for_test (int) = 0
Timelimit to execute test script (final_script) and Visualization.

cancel (CancellationToken or None) = None
Object to interrupt evaluations.

project_name (str or None) = None
Project name.

debug (bool) = False
Debug mode or not.

use_pos_list (list[str]) = [“”, “”, “”, “”, “”]
List of parts-of-speech to be used during text analysis. This variable is used for japanese texts analysis. Select
the part of speech below. “”, “”, “”, “”, “”.

use_word_stemming (bool) = True
Specify whether or not word stemming is used. This variable is used for japanese texts analysis.

n_models (int) = 3
Number of output models to be tried.

seed_for_model (int) = 42
Random seed for models such as RandomForestClassifier.

id_columns_for_prediction (list[str] or None) = None
Name of the dataframe columns that outputs the prediction result.

use_word_list (list[str], dict[str, list[str]], or None) = None
List of words to be used as features when generating explanatory variables from text. If dict type is specified,
key must be a column name and value must be a list of words.

hyperparameter_tuning (bool) = False
On/Off of hyperparameter tuning.

hyperparameter_tuning_n_trials (int) = 10
The number of trials of hyperparameter tuning.

hyperparameter_tuning_timeout (int) = 0
Time limit for hyperparameter tuning in each generated script. Ignored when hyperparameter_tuning is
False.

hyperparameter_tuning_random_state (int) = 1023
Random seed for hyperparameter tuning.

predict_option (‘default’ or ‘probability’) = ‘default’
Specify predict method (default: predict(), probability: predict_proba().)

permutation_importance (bool) = True
On/Off of outputting permutation importance calculation code.

add_explanation (bool) = False
If True, outputs ipynb files including EDA and explanation.

10 Chapter 3. Configuration

CHAPTER

FOUR

SETUP

4.1 Creating a development environment in your host

Python >=3.10,<3.13 is required.

Clone sapientml and core. If you need to modify preprocess and loaddata, please clone them as well.

mkdir AutoML
cd AutoML
git clone https://github.com/sapientml/sapientml.git
git clone https://github.com/sapientml/core.git

optional
git clone https://github.com/sapientml/preprocess.git
git clone https://github.com/sapientml/loaddata.git

Setup an environment in the sapientml repository folder.

cd /path/to/AutoML/sapientml
python -m venv venv
. venv/bin/activate
pip install poetry
poetry install
pre-commit install
pip install -e ../core

optional
pip install -e ../preprocess
pip install -e ../loaddata

For ubuntu, poetry install may fail. If so, try the following command:

PYTHON_KEYRING_BACKEND="keyring.backends.null.Keyring" poetry install

As sapientml and core are interdependent. Use below command to integrate.

pip install -e /path/to/AutoML/core
deactivate

Now download corpus inside sapientml_core.

11

https://github.com/sapientml/sapientml.git
https://github.com/sapientml/core.git
https://github.com/sapientml/preprocess.git
https://github.com/sapientml/loaddata.git
https://github.com/sapientml/sapientml/files/13432403/sapientml-corpus-0.1.3.zip

sapientml, Release 0.4.9

. venv/bin/activate
cd /path/to/AutoML/core/sapientml_core
pip install dvc
wget https://github.com/sapientml/sapientml/files/13432403/sapientml-corpus-0.1.3.zip
unzip sapientml-corpus-0.1.3.zip
mv sapientml-corpus-0.1.3 corpus
cd corpus
bash ./scripts/pull.sh
rm -f sapientml-corpus-0.1.3.zip
deac

After successfull installation, the following directory structure should reflect.

AutoML/
core/

sapientml_core/
corpus/

clean-notebooks/
annotated-notebooks/
dataset/

design/
training/

sapientml/
sapientml/

12 Chapter 4. Setup

CHAPTER

FIVE

TRAINING FROM A CORPUS

5.1 SapientML local training

5.1.1 1. Execution Method

Please refer to this page to finish the setup of development environment first. We assume that at this point, corpus
is downloaded and stored at the sapientml_core location, all the pipelines in the corpus is already clean using pro-
gram slicing and there exists a label file such as annotated-notebooks/annotated-notebooks-1140.csv that has all the
components for each pipeline.

• After successfull setup, the following directory structure should reflect.

AutoML/
core/

sapientml_core/
corpus/

clean-notebooks/
annotated-notebooks/
dataset/

design
training

sapientml/
sapientml/

Create sample main.py

• Create a driver code inside sapientml which runs each training step.

• We have to explicitly call the train method from the SapientMLGenerator class in order to train sapientml by
considering datasets taken from corpus.

from sapientml_core.generator import SapientMLGenerator

print("Training started")
print("=================")
cls = SapientMLGenerator()
cls.train(<tag>, <num_parallelization>)
print("=================")
print("Training ended")

13

sapientml, Release 0.4.9

• By executing the above driver code, a folder .cache is created inside sapientml_core and output files from local
training are stored here.

• Argument tag is passed to each step to determine the cache folder name. For example, ./.cache/2.5.1-test is
created as the cache folder if tag is set as “2.5.1-test”, then all artifacts of local training will be stored in that
folder. Otherwise if tag is not set, all artifacts will be stored in .cache.

• Also the argument num_parallelization is used for parallellizing the execution process and its default value is
200.

5.1.2 2. Local training process overview

• Step-1 : Denoise dataset

• Step-2 : Augment the corpus

• Step-3 : Extract meta-features

• Step-4 : Train the models

• Step-5 : Create dataflow model

5.1.3 3. Explanation of each process in local training

Step-1 : Denoise Dataset

Step-1A : static_analysis_of_columns

• core/sapientml_core/training/denoising/static_analysis_of_columns.py fetches all project list or pipeline details.

• Parse pipeline and fetch target, dropped, renamed column names.

• We use libcst library for parsing the column api details.

Note: This script can traverse an Abstract Syntax Tree (AST) using the LibCST library and retrieve many useful
information such as column names, API names, strings, assignments, and so on.

Output : static_info.json

• It will create the directory .cache/<tag>/static_info.json.

• It gives informations about pre-processing components operations.

Example:

{
"script0011.py": {

"drop_api": [
"Age",
"Balance",
"CreditScore",
"EstimatedSalary",
"RowNumber",
"CustomerId",

(continues on next page)

14 Chapter 5. Training from a corpus

sapientml, Release 0.4.9

(continued from previous page)

"Surname",
"Tenure",
"HasCrCard"

],
"rename_api": [],
"target": "Exited"

},

Step-1B : dataset_snapshot_extractor

• core/sapientml_core/training/denoising/dataset_snapshot_extractor.py fetches all project list or all pipeline de-
tails.

• Parse pipelines and instruments a given pipeline with code snippets to collect snapshots of dataset.

• We use ast library for parse and update the code.

• We use machinery library for the implementation of the import statement in updated pipeline.

• Execute the instrumented version of the pipeline to store the snapshot of the dataset after each line in the pipeline.

Output : dataset-snapshots

• It will create the directory .cache/<tag>/dataset-snapshots/.

• A JSON file for each pipeline that stores the snapshot of column names of the dataframe after important state-
ments in .cache/<tag>/dataset-snapshots as shown below.

• It is a dictionary that contains line number as a key and a list of column names as value.

Example:

[
{

"4": [
[

"RowNumber",
"CustomerId",
"Surname",
"CreditScore",
"Geography",
"Gender",
"Age",
"Tenure",
"Balance",
"NumOfProducts",
"HasCrCard",
"IsActiveMember",
"EstimatedSalary",
"Exited"

],
"data",
"<class 'pandas.core.frame.DataFrame'>"

(continues on next page)

5.1. SapientML local training 15

sapientml, Release 0.4.9

(continued from previous page)

]
}

]

Step-1C : determine_used_features

• core/sapientml_core/training/denoising/determine_used_features.py takes the outputs of static_info.json and
dataset-snapshots from Step-1A and Step-1B as input.

• Fetch summary for each pipeline from dataset_snapshot(json) created in step 1b.

• The summary consist of following information:

– pipeline name

– used_cols

– unmapped_cols

– new_cols

– target

– deleted

– status

Output : feature_analysis_summary.json

• It will create the JSON file .cache/<tag>/feature_analysis_summary.json

• It contains summary for all pipelines.

Example:

{
"script0011.py": {
"pipeline": "script0011.py",
"used_cols": [

"EstimatedSalary",
"Exited",
"Age",
"CreditScore",
"NumOfProducts",
"Gender",
"Geography",
"Balance",
"IsActiveMember"

],
"unmapped_cols": [],
"new_cols": [],
"target": "Exited",
"deleted": [

"Tenure",
"Surname",

(continues on next page)

16 Chapter 5. Training from a corpus

sapientml, Release 0.4.9

(continued from previous page)

"HasCrCard",
"RowNumber",
"CustomerId"

],
"status": "FINALIZED"

},

Step-2 : Corpus Augmentation

Step-2A : mutation_runner

• core/sapientml_core/training/augmentation/mutation_runner.py mutates each pipeline in the corpus, runs the
mutated version, and store all the details in .cache/<tag>/exec_info directory.

• In the first run, this step is expected to take a long time depending on the number of the pipelines in the corpus.
From the subsequent runs, mutation is only run for the new notebooks, i.e., if the mutated results are not found
locally for those notebooks.

• We use ast library for parsing and analyse the components in pipeline.

• It executes the mutated pipelines and store the results and logs.

Output: exec_info

• It will create the directory .cache/<tag>/exec_info

• It will contain the information of all the mutated pipeleines i.e., it replaces the model in the original pipeline with
a pre-defined list of models(21 models).

Step-2B : mutation_results

• core/sapientml_core/training/augmentation/mutation_results.py combines all the results in a CSV file and selects
the best model.

• It fetches the accuracy score of mutated corpus for all pipelines.

• And saves it in .cache/{tag(if any)}/mutation_results.csv file.

5.1. SapientML local training 17

sapientml, Release 0.4.9

Output : mutation_results.csv

file_nameran-
dom
for-
est,

ex-
tra
tree,

light-
gbm,

xg-
boost,

cat-
boost,

gra-
di-
ent
boost-
ing,

ad-
aboost,

de-
ci-
sion
tree,

svm, lin-
ear
svm,

lo-
gis-
tic/linear
re-
gres-
sion,

lasso,sgd, mlp, multi-
no-
mial
nb,

gaus-
sian
nb,

bernoulli
nb,

orig-
i-
nal,

best_models

script0011.py0.82750.83150.8580.85550.8590.86 0.8530.8250.8560.8460.85 0.0 0.8430.8520.84350.8170.8130.8555[‘gra-
di-
ent
boost-
ing’]

• From the above we can say that the gradient boosting model is the best model as it has greater accuracy than the
rest of the models.

Step-3 : Extraction of Meta-Features and Pipeline Components

• core/sapientml_core/training/meta_feature_extractor.py extracts the meta-features for all the projects, In
other words it fetches all the pipeline details. This will save all the meta-features at .cache/<tag>/ in form
of two CSV files:

1. one for pre-processing components (pp_metafeatures_training.csv).

2. another for the model components (model_metafeatures_training.csv).

• There are two modes of extracting meta-features. “clean” is active in default. This setting can be
modified directly in the source code

1. “as-is”

2. “clean”

• as-is computes meta-features based on all the meta-features in the dataset.

• clean mode only uses the meta-features that are used in the pipeline. Features which are already used in the
pipeline are pre-computed and stored in the .cache/<tag>/feature_analysis_summary.json file.

Output : pp_metafeatures_training.csv, model_metafeatures_training.csv

• Fetch meta features related to model and save to .cache/<tag>/pp_metafeatures_training.csv.

• Fetch meta features related to preprocess component and save to .cache/<tag>/model_meta_features_trainer.csv.

18 Chapter 5. Training from a corpus

sapientml, Release 0.4.9

Step-4 : Training Meta-Models for Skeleton Predictor

Step-4A: Training of pre-processing components (pp_model_trainer)

• core/sapientml_core/training/pp_model_trainer.py is in charge of training the meta-models for pre-processing
components.

• It takes .cache/<tag>/pp_metafeatures_training.csv as input and trains a decision tree for each pre-processing
component.

Output : pp_models.pkl

• .cache/<tag>/pp_models.pkl is a machine learning model pickle file for selecting pre-processing components.

Step-4B: Training of Model components (meta_model_trainer)

• core/sapientml_core/training/meta_model_trainer.py is in charge of training the meta-model that predicts and
ranks the model components for the pipeline. Currently it is an ensemble model that uses LogisticRegression
and SVM as the base classifiers and ranks the predicted model based on the average of their probability scores.

Output: mp_model_1.pkl, mp_model_2.pkl

• .cache/<tag>/mp_model_1.pkl is a LogisticRegression model pickle file for selecting pre-processing compo-
nents.

• .cache/<tag>/mp_model_2.pkl is a svm model pickle file for selecting pre-processing components.

Step-5 : Construct the Data Flow Model

Step-5A : dependent_api_extractor

• core/sapientml_core/training/dataflowmodel/dependent_api_extractor.py will get the API/labels that are depen-
dent on each other. A label is dependent on each other when they are applied on the same column.

• It gets all the annotated pipelines in the corpus.

• It reads Annotated_notebook csv and store the labels with respect to filename and line number

• If same label exists take a count and store as a dictionary data in final_dependency_list i.e {‘a b’:1, ‘c d’:3, ‘e
f’:2}

• It sorts the items and store all the list of dependent labels/APIs in dependent_labels.json file.

5.1. SapientML local training 19

sapientml, Release 0.4.9

Output : dependent_labels.json

• A JSON file stored in .cache/<tag>/dependent_labels.json containing the list of dependent APIs.

Example:

{
"['PREPROCESS:Category:get_dummies:pandas', 'PREPROCESS:DeleteColumns:drop:pandas']": 79,
"['PREPROCESS:ConvertStr2Date:to_datetime:pandas', 'PREPROCESS:DeleteColumns:drop:pandas
→˓']": 27,
"['PREPROCESS:MissingValues:fillna:pandas', 'PREPROCESS:DeleteColumns:drop:pandas']": 16,
"['PREPROCESS:Scaling:log:numpy', 'PREPROCESS:DeleteColumns:drop:pandas']": 12,
}

• In the above sample json file. The first line shows that they call get_dummies preprocessor first and then
DeleteColumns preprocessor next and this pair is dependent on each other.

• The number denotes the count of this dependent_labels executed as we have multiple pipelines.

Step-5B : determine_label_order

• core/sapientml_core/training/dataflowmodel/determine_label_order.py will determine the order of the compo-
nents.

• If there is any order exists. It will extract the order of two APIs/labels A and B.

• There is an order between A –> B if A and B are dependent on each other based on ‘dependent_api_extractor.py’
and A is always followed by B in all piplelines and there is NO case in the corpus where B is followed by A.

• Based on the previous step output file .cache/<tag>/dependent_labels.json, An output json file
.cache/<tag>/label_orders.json is created.

Output: label_orders.json

• A JSON file stored in .cache/<tag>/label_orders.json containing the order of labels in a pair-wise form.

Example:

[
"PREPROCESS:MissingValues:fillna:pandas#PREPROCESS:GenerateColumn:groupby:pandas",
"PREPROCESS:TypeChange:astype:pandas#PREPROCESS:MissingValues:fillna:pandas",
"PREPROCESS:MissingValues:interpolate:sklearn#PREPROCESS:CONVERT_NUM2NUM:where:numpy",
"PREPROCESS:TypeChange:astype:pandas#PREPROCESS:GenerateColumn:date:pandas",
"PREPROCESS:MissingValues:fillna:pandas#PREPROCESS:TypeChange:astype:pandas",
"PREPROCESS:MissingValues:fillna:pandas#PREPROCESS:Category:get_dummies:pandas",
]

20 Chapter 5. Training from a corpus

sapientml, Release 0.4.9

5.1.4 4. How to use training output

• After label_orders.json is produced, it is copied into core/sapientml_core/adaptation/artifacts/label_order.json
so that SapientML can use it. Please note that the dataflow model is a very important artifact. So make sure
that the updated dataflow model is correct before replacing the existing one. Generally, it should not be updated
unless there is no new pre-processing components.

• Replace models (core/sapientml_core/models/) folder files with the respective files generated in .cache file.

– Replace core/sapientml_core/models/feature_importance.json with
.cache/<tag>/feature_importance.json.

– Replace core/sapientml_core/models/pp_models.pkl with .cache/<tag>/pp_models.pkl

– Replace core/sapientml_core/models/mp_model_1.pkl with .cache/<tag>/mp_model_1.pkl

– Replace core/sapientml_core/models/mp_model_2.pkl with .cache/<tag>/mp_model_2.pkl

5.1. SapientML local training 21

sapientml, Release 0.4.9

22 Chapter 5. Training from a corpus

CHAPTER

SIX

API

6.1 Main class

class sapientml.SapientML(target_columns: list[str], task_type: Literal['classification', 'regression'] | None =
None, adaptation_metric: str | None = None, split_method: Literal['random',
'time', 'group'] = 'random', split_seed: int = 17, split_train_size: float = 0.75,
split_column_name: str | None = None, time_split_num: int = 5, time_split_index:
int = 4, split_stratification: bool | None = None, model_type: str = 'sapientml',
**kwargs)

The constructor of SapientML.

You can pass all the keyword arguments for configurations of PipelineGenerators and CodeBlockGenerators from
plugins.

Parameters

• target_columns (list[str]) – Names of target columns.

• task_type ('classification', 'regression' or None) – Specify task type classifica-
tion, regression.

• adaptation_metric (str) – Metric for evaluation. Classification: ‘f1’, ‘auc’,
‘ROC_AUC’, ‘accuracy’, ‘Gini’, ‘LogLoss’, ‘MCC’(Matthews correlation coefficient),
‘QWK’(Quadratic weighted kappa). Regression: ‘r2’, ‘RMSLE’, ‘RMSE’, ‘MAE’.

• split_method ('random', 'time', or 'group') – Method of train-test split. ‘random’
uses random split. ‘time’ requires ‘split_column_name’. This sorts the data rows based
on the column, and then splits data. ‘group’ requires ‘split_column_name’. This splits the
data so that rows with the same value of ‘split_column_name’ are not placed in both training
and test data.

• split_seed (int) – Random seed for train-test split. Ignored when split_method=’time’.

• split_train_size (float) – The ratio of training size to input data. Ignored when
split_method=’time’.

• split_column_name (str) – Name of the column used to split. Ignored when
split_method=’random’

• time_split_num (int) – Passed to TimeSeriesSplit’s n_splits. Valid only when
split_method=’time’.

• time_split_index (int) – The index of the split from TimeSeriesSplit. Valid only when
split_method=’time’.

• split_stratification (bool) – To perform stratification in train-test split. Valid only
when task_type=’classification’.

23

sapientml, Release 0.4.9

fit(training_data: DataFrame | str, validation_data: DataFrame | str | None = None, test_data: DataFrame |
str | None = None, save_datasets_format: Literal['csv', 'pickle'] = 'pickle', csv_encoding: Literal['UTF-8',
'SJIS'] = 'UTF-8', csv_delimiter: str = ',', ignore_columns: list[str] | None = None, output_dir: str =
'./outputs', codegen_only: bool = False)
Generate ML scripts for input data.

Parameters

• training_data (pandas.DataFrame or str) – Training dataframe. When str, this is
regarded as a file path.

• validation_data (pandas.DataFrame, str or None) – Validation dataframe.
When str, this is regarded as file paths. When None, validation data is extracted from
training data by split.

• test_data (pandas.DataFrame, str, or None) – Test dataframes. When str, they
are regarded as file paths. When None, test data is extracted from training data by split.

• save_datasets_format ('csv' or 'pickle') – Data format when the input dataframes
are written to files. Ignored when all inputs are specified as file path.

• csv_encoding ('UTF-8' or 'SJIS') – Encoding method when csv files are involved. Ig-
nored when only pickle files are involved.

• csv_delimiter (str) – Delimiter to read csv files.

• ignore_columns (list[str]) – Column names which must not be used and must be
dropped.

• output_dir (str) – Output directory.

• codegen_only (bool) – Do not conduct fit() of GeneratedModel if True.

Returns
self – SapientML object itself.

Return type
SapientML

static from_pretrained(model)
The factory method of SapientML from a pretrained model built by source code previously generated by
SapientML.

model must be either pickle filename, pickle bytes-like object, or deserialized object

Parameters
model (str, bytes-like object, or GeneratedModel) – A pretrained model built by
source code previously generated by SapientML.

Returns
sml – a new SapientML instance loaded from the pretrained model.

Return type
SapientML

predict(test_data: DataFrame)
Predicts the output of the test_data.

Parameters
test_data (pd.DataFrame) – Dataframe used for predicting the result.

Returns
result – It returns the prediction_result.csv result in dataframe format.

24 Chapter 6. API

sapientml, Release 0.4.9

Return type
pd.DataFrame

class sapientml.GeneratedModel(input_dir: PathLike, save_datasets_format: Literal['csv', 'pickle'], timeout:
int, csv_encoding: Literal['UTF-8', 'SJIS'], csv_delimiter: str, params: dict)

The constructor of GeneratedModel. Instantiating this class by yourself is not intended.

Parameters

• input_dir (PathLike) – Directory path containing training/prediction scripts and trained
models.

• save_datasets_format ('csv' or 'pickle') – Data format when the input dataframes
are written to files. Ignored when all inputs are specified as file path.

• timeout (int) – Timeout for the execution of training and prediction.

• csv_encoding ('UTF-8' or 'SJIS') – Encoding method when csv files are involved. Ig-
nored when only pickle files are involved.

• csv_delimiter (str) – Delimiter to read csv files.

fit(X: DataFrame, y: DataFrame | Series | None = None)
Generate ML scripts for input data.

Parameters

• X (pandas.DataFrame) – Training dataframe. Contains target values if y is None.

• y (pandas.DataFrame or pandas.Series) – The target values.

Returns
self – GeneratedModel object itself

Return type
GeneratedModel

predict(X: DataFrame)
Predicts the output of the test_data and store in the prediction_result.csv.

Parameters
X (pd.DataFrame) – Dataframe used for predicting the result.

Returns
result_df – It returns the prediction_result.csv result in dataframe format.

Return type
pd.DataFrame

save(output_dir: PathLike)
Save generated code to output_dir folder

Parameters
output_dir (Path-like object) – Training dataframe.

Returns
self – GeneratedModel object itself

Return type
GeneratedModel

6.1. Main class 25

sapientml, Release 0.4.9

6.2 Config parameters

class sapientml.Config(*, initial_timeout: int = 600, timeout_for_test: int = 0, cancel: CancellationToken |
None = None, project_name: str | None = None, debug: bool = False)

Configuration arguments for sapientml.generator.CodeBlockGenerator and/or sapi-
entml.generator.PipelineGenerator.

initial_timeout

Timelimit to execute each generated script. Ignored when hyperparameter_tuning=True and hyperparam-
eter_tuning_timeout is set.

Type
int

timeout_for_test

Timelimit to execute test script (final_script) and Visualization.

Type
int

cancel

Object to interrupt evaluations.

Type
CancellationToken, optional

project_name

Project name.

Type
str, optional

debug

Debug mode or not.

Type
bool

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid
model.

__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.

class sapientml_core.SapientMLConfig(*, initial_timeout: int = 600, timeout_for_test: int = 0, cancel:
CancellationToken | None = None, project_name: str | None = None,
debug: bool = False, n_models: int = 3, seed_for_model: int = 42,
id_columns_for_prediction: list[str] | None = None, use_word_list:
list[str] | dict[str, list[str]] | None = None, hyperparameter_tuning:
bool = False, hyperparameter_tuning_n_trials: int = 10,
hyperparameter_tuning_timeout: int = 0,
hyperparameter_tuning_random_state: int = 1023, predict_option:
Literal['default', 'probability'] = 'default', permutation_importance:
bool = True, add_explanation: bool = False)

Configuration arguments for SapientMLGenerator.

26 Chapter 6. API

sapientml, Release 0.4.9

n_models

Number of output models to be tried.

Type
int, default 3

seed_for_model

Random seed for models such as RandomForestClassifier.

Type
int, default 42

id_columns_for_prediction

Name of the dataframe columns that outputs the prediction result.

Type
Optional[list[str]], default None

use_word_list

List of words to be used as features when generating explanatory variables from text. If dict type is specified,
key must be a column name and value must be a list of words.

Type
Optional[Union[list[str], dict[str, list[str]]]], default None

hyperparameter_tuning

On/Off of hyperparameter tuning.

Type
bool, default False

hyperparameter_tuning_n_trials

The number of trials of hyperparameter tuning.

Type
int, default 10

hyperparameter_tuning_timeout

Time limit for hyperparameter tuning in each generated script. Ignored when hyperparameter_tuning is
False.

Type
int, default 0

hyperparameter_tuning_random_state

Random seed for hyperparameter tuning.

Type
int, default 1023

predict_option

Specify predict method (default: predict(), probability: predict_proba().)

Type
Literal[“default”, “probability”], default “default”

permutation_importance

On/Off of outputting permutation importance calculation code.

Type
bool, default True

6.2. Config parameters 27

sapientml, Release 0.4.9

add_explanation

If True, outputs ipynb files including EDA and explanation.

Type
bool, default False

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid
model.

__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.

postinit()

Set initial_timeout and hyperparameter_tuning_timeout.

If initial_timeout is set as None and hyperparameter_tuning is false, set initial_timeout as INI-
TIAL_TIMEOUT.

For hyperparameter_tuning_timeout, if both initial_timeout and hyperparameter_tuning_timeout are set as
None, set hyperparameter_tuning_timeout as INITIAL_TIMEOUT.

If initial_timeout is set and hyperparameter_tuning is True, and hyperparameter_tuning_timeout is None :

Set the hyperparameter_tuning_timeout to unlimited.(hyperparameter_tuning_timeout =
self.initial_timeout.) Since initial_timeout always precedes hyperparameter_tuning_timeout, it
can be expressed that there is no time limit for hyperparameters during actual execution.

class sapientml_preprocess.PreprocessConfig(*, initial_timeout: int = 600, timeout_for_test: int = 0,
cancel: CancellationToken | None = None, project_name:
str | None = None, debug: bool = False, use_pos_list:
list[str] | None = ['', '', '', '', ''], use_word_stemming: bool
= True)

Configuration arguments for sapientml_preprocess.Preprocess class.

use_pos_list

List of parts-of-speech to be used during text analysis. This variable is used for japanese texts analysis.
Select the part of speech below. “”, “”, “”, “”, “”.

Type
Optional[list[str]]

use_word_stemming

Specify whether or not word stemming is used. This variable is used for japanese texts analysis.

Type
bool default True

Create a new model by parsing and validating input data from keyword arguments.

Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid
model.

__init__ uses __pydantic_self__ instead of the more common self for the first arg to allow self as a field name.

28 Chapter 6. API

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

• modindex

• search

29

sapientml, Release 0.4.9

30 Chapter 7. Indices and tables

INDEX

A
add_explanation (sapientml_core.SapientMLConfig

attribute), 27

C
cancel (sapientml.Config attribute), 26
Config (class in sapientml), 26

D
debug (sapientml.Config attribute), 26

F
fit() (sapientml.GeneratedModel method), 25
fit() (sapientml.SapientML method), 24
from_pretrained() (sapientml.SapientML static

method), 24

G
GeneratedModel (class in sapientml), 25

H
hyperparameter_tuning (sapi-

entml_core.SapientMLConfig attribute),
27

hyperparameter_tuning_n_trials (sapi-
entml_core.SapientMLConfig attribute),
27

hyperparameter_tuning_random_state (sapi-
entml_core.SapientMLConfig attribute), 27

hyperparameter_tuning_timeout (sapi-
entml_core.SapientMLConfig attribute),
27

I
id_columns_for_prediction (sapi-

entml_core.SapientMLConfig attribute),
27

initial_timeout (sapientml.Config attribute), 26

N
n_models (sapientml_core.SapientMLConfig attribute),

26

P
permutation_importance (sapi-

entml_core.SapientMLConfig attribute),
27

postinit() (sapientml_core.SapientMLConfig method),
28

predict() (sapientml.GeneratedModel method), 25
predict() (sapientml.SapientML method), 24
predict_option (sapientml_core.SapientMLConfig at-

tribute), 27
PreprocessConfig (class in sapientml_preprocess), 28
project_name (sapientml.Config attribute), 26

S
SapientML (class in sapientml), 23
SapientMLConfig (class in sapientml_core), 26
save() (sapientml.GeneratedModel method), 25
seed_for_model (sapientml_core.SapientMLConfig at-

tribute), 27

T
timeout_for_test (sapientml.Config attribute), 26

U
use_pos_list (sapientml_preprocess.PreprocessConfig

attribute), 28
use_word_list (sapientml_core.SapientMLConfig at-

tribute), 27
use_word_stemming (sapi-

entml_preprocess.PreprocessConfig attribute),
28

31

	Installation
	Install with pip

	Usage
	SapientML class
	Generated source code
	Using generated code as a model

	Configuration
	Model types
	Parameters for sapientml

	Setup
	Creating a development environment in your host

	Training from a corpus
	SapientML local training
	1. Execution Method
	Create sample main.py

	2. Local training process overview
	3. Explanation of each process in local training
	Step-1 : Denoise Dataset
	Step-1A : static_analysis_of_columns
	Output : static_info.json
	Step-1B : dataset_snapshot_extractor
	Output : dataset-snapshots
	Step-1C : determine_used_features
	Output : feature_analysis_summary.json

	Step-2 : Corpus Augmentation
	Step-2A : mutation_runner
	Output: exec_info
	Step-2B : mutation_results
	Output : mutation_results.csv

	Step-3 : Extraction of Meta-Features and Pipeline Components
	Output : pp_metafeatures_training.csv, model_metafeatures_training.csv

	Step-4 : Training Meta-Models for Skeleton Predictor
	Step-4A: Training of pre-processing components (pp_model_trainer)
	Output : pp_models.pkl
	Step-4B: Training of Model components (meta_model_trainer)
	Output: mp_model_1.pkl, mp_model_2.pkl

	Step-5 : Construct the Data Flow Model
	Step-5A : dependent_api_extractor
	Output : dependent_labels.json
	Step-5B : determine_label_order
	Output: label_orders.json

	4. How to use training output

	API
	Main class
	Config parameters

	Indices and tables
	Index

